
© Fraunhofer IESE 

EVENTUAL CONSISTENCY
Du musst keine Angst haben…

Susanne Braun

24.06.2021

embarc Midsommar

Oder doch?



© Fraunhofer IESE 

2

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &  
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, …

“There is an interesting connection

between 

fault tolerance, offlineable systems,

and the need for 

application-based eventual 
consistency.”

application-based eventual 
consistency

fault tolerance, offlineable systems

Conference on Innovative Data Systems Research, 2009



© Fraunhofer IESE 

3

“Correlating” Quality Attributes

Fault Tolerance Resilience

Loose Coupling

Availability

Scalability

Offline

Capability

Network

Partition 

Tolerance

Low Latency

Responsiveness



© Fraunhofer IESE 

4

Eric Brewer

Distributed Systems Researcher

Coined the CAP theorem, Contributed to 
Spanner

Prof. emeritus University of California, Berkeley, 
works now for Google

“But we forfeit C and I of ACID for 
availability, graceful degradation and 

performance.”

ACM Symposium on Principles of Distributed Computing, 2000



© Fraunhofer IESE 

5

ACID vs. BASE

ACID BASE
Strong Consistency

(in the sense of one-copy-consistency)
Isolation

(in the sense of one-copy-serializability)
Pessimistic Synchronization

(global locks, synchronous update propagation)
Global Commits

(2PC, majority consensus, …)

Atomicity

Consistency

Isolation

Durability

Eventual Consistency

(stale data & approximate answers)
Availability

(top priority)
Optimistic Synchronization

(no locks, asynchronous update propagation)
Independent Local Commits

(conflict resolution, reconciliation, …)

Atomicity

Consistency

Isolation

Durability ?

Database is in a consistent state & 
all invariants are being met!

This is about Concurrency Control!

This is about Convergence!



© Fraunhofer IESE 

6

Strong Consistency vs. Isolation

“Strong Consistency tries to mask the distributed nature of the system”

“Isolation tries to mask the effects of concurrent execution”

Make it appear 
as one system!

Make it appear I am the 
only user of the system!



© Fraunhofer IESE 

7

Douglas Terry

Distributed Systems Researcher

Coined the term Eventual Consistency in the 
90ties

Former Prof. University of California, Berkeley, 
worked for Microsoft, Samsung, AWS

“A system providing eventual 
consistency guarantees that replicas 

would eventually converge to a 
mutually consistent state, i.e., to 

identical contents, if update activity 
ceased.”

Int. Conference on Parallel and Distributed Information Systems, 1994



© Fraunhofer IESE 

8

Douglas Terry

Distributed Systems Researcher

Coined the term Eventual Consistency in the 
90ties

Former Prof. University of California, Berkeley, 
worked for Microsoft, Samsung, AWS

“A system providing eventual 
consistency guarantees that replicas 

would eventually converge to a 
mutually consistent state, i.e., to 

identical contents, if update activity 
ceased.”

Int. Conference on Parallel and Distributed Information Systems, 1994

Pragmatic Definition

A system provides eventual consistency if:
(1)each update operation is eventually received by each 

replica

(2)non-commutative update operations are performed 
in the same order at each replica

(3)the outcome of a sequence of update operations is 
the same at each replica (determinism)

Replicated Data Management for Mobile Computing, 2008



© Fraunhofer IESE 

9

Eventual Consistency

Remember:

The only guarantee you get:  
convergence to identical state

Outdated Data

Conflicts

Potential Concurrency Anomalies

Events / Operations coming out of order

Application needs to handle:

Huge source of human error!



© Fraunhofer IESE 

10

Eventual Consistency

Remember:

You do not get any isolation guarantees like ‘Repeatable Read’

Hard to test

Issues emerge randomly in production

… are hard to reproduce

… are hard to debug

Application needs to handle concurrency control: 

Huge source of human error!



© Fraunhofer IESE 

11

Consistency in Non-Transactional Distributed Storage Systems 

Source: ACM Computing Surveys, Vol. 49, No. 1, Article 19, 2016



© Fraunhofer IESE 

12

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &  
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, …

“… it is time for us to move past the 
examination of eventual consistency 

in terms of updates and storage 
systems. The real action comes when 

examining application-based 
operation semantics.”

in terms of Reads and Writes

application-based
operation semantics

in terms of updates and storage

Conference on Innovative Data Systems Research, 2009

eventual consistency

systems



© Fraunhofer IESE 

13

DDD Layered Architecture
In

fr
a

st
ru

ct
u

re
 

La
y

e
r

D
o

m
a

in
 L

a
y

e
r

A
p

p
li

ca
ti

o
n

 
La

y
e

r

DB

SELECT Statement

DB

UPDATE Statement

Application Service

Transaction Method

Aggregate Repository

Query Method (findBy…)

Aggregate

Domain Logic Method

DB

BOT

DB

EOT

DIPDIP

Lo
w

 l
e

v
e

l 

R
e

a
d

 / 
W

ri
te

 
O

p
e

ra
ti

o
n

s

B
u

si
n

e
ss

 O
p

e
ra

ti
o

n
s

P
ro

ce
ss

e
s,

w
o

rk
fl

o
w

sApplication Code

Domain Model

Eventual Consistency

Goal

B
u

si
n

e
ss

 
S

e
m

a
n

ti
cs



© Fraunhofer IESE 

14

Recap Concurrency Control in Relational DBs

n A schedule of concurrent transactions is conflict-serializable iff the conflict graph is acyclic and 
compatible with the execution order of the conflicting operations

Time

R(a) W(a) R(a) W(a) R(b) W(b) R(b) W(b)

Transactions T1, T2: 

T1 T2Conflict graph:

Conflict graph is cyclic 
⇢ No conflict serializability
⇢ Schedule would be rejected



© Fraunhofer IESE 

16

Business Semantics - Banking

t

R(a) W(a) R(a) W(a) R(b) W(b) R(b) W(b)

Withdraw(a)

T1

Deposit(b)Withdraw(a) Deposit(b)

T2



© Fraunhofer IESE 

17

Multilevel Transactions 
(Weikum et al. 1992)

n If at each level the conflict serialization graph is acyclic then the multilevel schedule is in total 
multilevel serializable

n Exploit semantics of operations in level-specific conflict relations that reflect the 
commutativity / compatibility of operations

n Transactions are decomposed into operations and the operations again into sub-operations on 
multiple levels

n Transactions, Business operations, Low-level read and write operations

n At each level a conflict relationship is defined

n read-write conflicts and write-write conflicts on the same data item conflict at the lowest level

n Non-commutative operations are conflicting on the level of business operations

In practice comparable to serializability!

Goal: Increase number of operations that can run concurrently!



© Fraunhofer IESE 

19

Multilevel Transactions Example
(Weikum et al. 1992)

t

R(a) W(a) R(a) W(a) R(b) W(b) R(b) W(b)

Withdraw(a)

T1

Deposit(b)Withdraw(a) Deposit(b)

T2

Conflict graph at level 
of domain operations:

Conflict graph at 
level of transactions: ⌀

1

2

3

Low level Read 
/ Write 

Operations

Domain 
Operations

Transactions

Withdraw(a) Withdraw(a)
Deposit(b) Deposit(b)

Conflict graph is acyclic at each level!

2 1

3 2



© Fraunhofer IESE 

20

DDD Layered Architecture
In

fr
a

st
ru

ct
u

re
 

La
y

e
r

D
o

m
a

in
 L

a
y

e
r

A
p

p
li

ca
ti

o
n

 
La

y
e

r

DB

SELECT Statement

DB

UPDATE Statement

Application Service

Transaction Method

Aggregate Repository

Query Method (findBy…)

Aggregate

Domain Logic Method

DB

BOT

DB

EOT

DIPDIP

Lo
w

 l
e

v
e

l 

R
e

a
d

 / 
W

ri
te

 
O

p
e

ra
ti

o
n

s

B
u

si
n

e
ss

 O
p

e
ra

ti
o

n
s

P
ro

ce
ss

e
s,

w
o

rk
fl

o
w

sApplication Code

Domain Model

Eventual Consistency

Goal

B
u

si
n

e
ss

 
S

e
m

a
n

ti
cs



© Fraunhofer IESE 

21

Domain 
Operation Design



© Fraunhofer IESE 

22

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &  
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, …

Conference on Innovative Data Systems Research, 2009

A

C

I

D

2.0

Associative

Commutative

Idempotent

Distributed

(ab)c = a(bc)

ab = ba

aa = a

Operations 
executed out 

of order… 



© Fraunhofer IESE 

23

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

Popular Examples in Scientific Publications

Commutative Operations

o.domainOperation1(..)
o.domainOperation2(..) 

= 
o.domainOperation2(..)
o.domainOperaton1(..)

‘o’ is some 
Aggregate / Entity / Domain Service

Counters - Integer Addition

Sets – Insert

Banking – Withdraw

Banking – Deposit



© Fraunhofer IESE 

26

Annette Bieniusa

CRDT Guru

Co-Creator of AntidoteDB

Worked at INRIA with Marc 
Shapiro, TU Kaiserslautern



© Fraunhofer IESE 

27

CRDTs are grounded in algebraic 
theories of monotonic semilattices

Conflict-Free Replicated Data Types (CRDTs)

CRDTs ship with 
commutative merge operations
designed to be a 

least upper bound (LUB)
of the conflicting versions.

Intuitive Example: Amazon’s Shopping Card* 

Consider LUB as union of different object 
states produced at different replicas 

Shopping Card

－ Soap

－ Lotion

Shopping Card

－ Lotion

－ Brush

Merge

Shopping Card

－ Soap

－ Lotion

－ Brush

Deleted items 
might reappear

* Werner Vogels, Communications of the ACM, Volume 52, Issue 1, 2009



© Fraunhofer IESE 

28

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

Beware of Domain Invariants

Model Domain Invariants explicitly! Examples: 

Banking – Withdraw

withdraw(amount) {
…
assert(balance > dispoLimit)
}

Commutativity ?



© Fraunhofer IESE 

30

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

“Distributed” Operations

Concurrent operations can be executed in a 
different order on different replicas.

Example: Concurrent operations

Domain Operations need the ability to 
produce intended updates if executed on 
different states on different replicas! Replica 1

Replica 2

Operation

Operation Operation

Operation

Operation



© Fraunhofer IESE 

31

Collaborative Text Editing

Replica 1

Replica 2

insert(6, ‘r’)

insert(1, ‘e’) insert(2, ‘l’) insert(6, ‘r’)

“Hlo Wold”

“Hlo World”

“Helo Wold” “Hello Wold” “Hello rWold”



© Fraunhofer IESE 

35

Domain Data 
Design



© Fraunhofer IESE 

36

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &  
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, …

“Immutability Changes Everything”

ACM Queue, Volume 13, Issue 9, 2016



© Fraunhofer IESE 

38

C
l a

 s
 s

 i 
f 

i c
 a

 t
 i 

o
 n

1st Level Classification of Replicated Aggregates

Mutable ?

Observed

Aggregates*

No

Concurrent In-Place Updates ?

Yes

No

Derived

Aggregates*

Multiple Updaters ?

Yes

Dedicated

Aggregates

Nontrivial

Aggregates

YesNo

* “Append-Only Computing” – Helland 2015 

Observed Aggregates: 

• Time series data (machine 
sensor data, market data, …)

• Domain events

Derived Aggregates:

• Machine generated data 
(recommendations, …)

• Timeline or newsfeed data

Dedicated Aggregates:

• User generated data (reviews, 
social media posts, ...)

• Dedicated master data (user 
profiles, account settings)

E x a m p l e s



© Fraunhofer IESE 

40

C
l a

 s
 s

 i 
f 

i c
 a

 t
 i 

o
 n

2nd Level Classification of Nontrivial Aggregates

Activity Aggregates

Collaboration Result

Aggregates

Reference Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

Update Frequency in 
Peak Times

Update Simultaneity in 
Peak Times

Concurrency Anomaly 
Probability

low improbable low

-

N
o

n
tr

iv
ia

l 

A
g

g
re

g
a
te

s

Reference Aggregates Examples:

• Master data (CRM data, resources, products, …)

• Values (Valid currencies, product types, gender, …)

• Meta data (Tags, descrtiptive data of raw data, ..)



© Fraunhofer IESE 

41

C
l a

 s
 s

 i 
f 

i c
 a

 t
 i 

o
 n

2nd Level Classification of Nontrivial Aggregates

Activity Aggregates

Collaboration Result

Aggregates

Reference Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

Update Frequency in 
Peak Times

Update Simultaneity in 
Peak Times

Concurrency Anomaly 
Probability

low

high

improbable

probable

low

high

-

N
o

n
tr

iv
ia

l 

A
g

g
re

g
a
te

s

Reference Aggregates Examples:

• Master data (CRM data, resources, products, …)

• Values (Valid currencies, product types, gender, …)

• Meta data (Tags, descrtiptive data of raw data, ..)

Activity Aggregates Examples:

• State data of workflows, business processes, …

• Coordination data of joint activities (agricultural 
field operation, meeting, …)

• Task management data, Kanban board data, …



© Fraunhofer IESE 

42

C
l a

 s
 s

 i 
f 

i c
 a

 t
 i 

o
 n

2nd Level Classification of Nontrivial Aggregates

Activity Aggregates

Collaboration Result

Aggregates

Reference Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

Update Frequency in 
Peak Times

Update Simultaneity in 
Peak Times

Concurrency Anomaly 
Probability

low

high

very high

improbable

probable

highly probable

low

high

very high

-

N
o

n
tr

iv
ia

l 

A
g

g
re

g
a
te

s

Reference Aggregates Examples:

• Master data (CRM data, resources, products, …)

• Values (Valid currencies, product types, gender, …)

• Meta data (Tags, descrtiptive data of raw data, ..)

Activity Aggregates Examples:

• State data of workflows, business processes, …

• Coordination data of joint activities (agricultural 
field operation, meeting, …)

• Task management data, Kanban board data, …

Collaboration Result Aggregates Examples:

• Result data of collaborative knowledge work (CAD 
model, crop rotation plan, whiteboard diagram, …)

• Text data as result of collaborative authorship 
(manuals, scientific papers, meeting protocols, …)



© Fraunhofer IESE 

43

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

Concurrency Anomalies Impact Assessment

Concurrency Anomaly 
Probability

Fixing Costs of 
Data Corruption

low

high

very high

very high

high

very high

moderate

very high

moderate

Reference Aggregates

Activity Aggregates

Collaboration Result

Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

low

Consequences of 
Data Corruption

critical

major

critical

minor

depends

critical

N
o

n
tr

iv
ia

l

A
g

g
re

g
a
te

s

“Technical Immutability Border”

Tr
iv

ia
l

A
g

g
re

g
a
te

s

A Classification of Replicated Data for the Design of Eventually Consistent Domain Models, 
S. Braun, S. Dessloch, ICSA 2020



© Fraunhofer IESE 

44

Eventual Consistency 

is standard

Estimation - Frequency of Classes in your Architecture Design

Trad. Enterprise IS
(ERP, CRM, Workflow Management)

Social Media Apps
(Facebook, Twitter)

Next: Data-Intensive Systems
(Smart Farming, Industrie 4.0)

30%

30%

9 % 45%

4%

1%

20%

20%

20%

20%

“T
ec

h
n

ic
al

 Im
m

u
ta

b
ili

ty
 B

o
rd

er
”

Reference Aggregates

Activity Aggregates

Collaboration Result

Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

1 % 50% 20%

30 %



© Fraunhofer IESE 

46

Trivial Aggregates First

n Whenever feasible, model aggregates as trivial aggregates*

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

P a t t e r nA n t i  - P a t t e r n

StockItems

StockItem

productId: String

number: int

1..*

1

In-place Updates

Nontrivial Activity Aggregate

GoodsReceiepts

OrderConfirmations

Observed Aggregates

StockItems

StockItem

productId: String

number: int

1

Derived Aggregate

Calculated

periodically or 
on demand

Te
ch

n
ic

al
 Im

m
u

ta
b

ili
ty

1..*

* See also: Event Sourcing & CQRS (Command Query Responsibility Segregation)



© Fraunhofer IESE 

47

Dedicated Aggregates are Solitary

n Design dedicated data as self-contained aggregate 

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

P a t t e r nA n t i  - P a t t e r n

Operation

Field Assignment DocumentationRecords

DocRecord

1..*

1
Nontrivial Activity Aggregate

Dedicated to single 
user

Operation

Field Assignment

DocumentationRecords

DocRecord

1..*

1

Nontrivial Activity Aggregate

Cross-aggregate 
reference

Dedicated Aggregate

1..* 1..* 1
11 1

11
1..* 1..*



© Fraunhofer IESE 

48

Separation of Aggregate Classes

n Whenever feasible, keep data of different classes in separate aggregates

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

P a t t e r nA n t i  - P a t t e r n

Operation

Field Assignment

Nontrivial Activity Aggregate

Reference data that 
is rarely updated

Operation
Field

Assignment

Nontrivial Activity Aggregate

Reference

Aggregate

Cross-aggregate reference

1..*1..*

1..*

11

1



© Fraunhofer IESE 

49

Derived Aggregates are idempotent

n The calculation of the state of a derived aggregate should be idempotent & deterministic

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e



© Fraunhofer IESE 

50

Do not Forget the Master

n Consider using Primary Copy Replication, if transactional guarantees are required

B
e 

s 
t 

   
P

r 
a 

c 
t 

i c
 e

P a t t e r nA n t i  - P a t t e r n

Update Everywhere
Primary Copy

A

A

A

A

A A

<A

Update Update Update Update

UpdateUpdate

Update

A

A

A

A

A A

<A

Update



© Fraunhofer IESE 

51

Extensive Guidance in the ECD3 Domain Objects Design Guide

A n t i  - P a t t e r n

Nontrivial Activity Aggregate

Field Assignment DocRecord

0..* 0..*

1
1

Job

id: Identifier

status: JobStatusEnum

OperationType

id: Identifier

name: String

StaffAssignmentMachineAssignment

Machine StaffMember

0..10..*

0..*

0..*

0..*

1

0..*

1

1

0..*

id: Identifier id: Identifier id: Identifier

id: Identifier id: Identifier

Dedicated to single 
user

Reference data that 
is rarely updated



© Fraunhofer IESE 

52

ECD3 Compatibility Relations

n To be published at the 8th Workshop on Principles 
and Practice of Consistency for Distributed Data

n Of EuroSys 2021



© Fraunhofer IESE 

53

Future Work

n ECD3 – Eventually Consistent Domain Driven Design

n Best Practices & Software Architecture Design Guidelines

n Framework            Towards Multilevel Transactions

n Action Research Study

n Workshops with Practitioners

EventuallyConsistentDDD/design-guidelines
We’ re on 
Github!

https://github.com/EventuallyConsistentDDD/design-guidelines


© Fraunhofer IESE 

56

#Thanx
#StayHome

Fraunhofer IESE, Kaiserslautern

Susanne Braun

Software Developer & Architect

susanne.braun@iese.fraunhofer.de

@susannebraun

EventuallyConsistentDDD/design-guidelines

mailto:susanne.braun@iese.fraunhofer.de
https://github.com/EventuallyConsistentDDD/design-guidelines

