EVENTUAL CONSISTENCY

Du musst keine Angst haben... Oder doch?

— Fraunhofer

IESE

24.06.2021

Susanne Braun embarc Midsommar

rrrrrrrrrrrrrrr

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, ...

“There iIs an interesting connection
between
fault tolerance, offlineable systems
and the need for

application-based eventual
consistency.”

Conference on Innovative Data Systems Research, 2009

“Correlating” Quality Attributes

Fault Tolerance . o= Resilience
‘I‘ \\\ ‘
' Loose Coupling
". Availability
\J
Scalability

Network P :
» Offline
Partition » .
P Capability
Tolerance . /
y
Low Latency !
\|
Responsiveness

\

~ Fraunhofer
|IESE

Eric Brewer

Distributed Systems Researcher

Coined the CAP theorem, Contributed to
Spanner

Prof. emeritus University of California, Berkeley,

works now for Google

“But we forfeit C and I of ACID for
availability, graceful degradation and
performance.”

ACM Symposium on Principles of Distributed Computing, 2000

ACID vs. BASE

This is about Concurrency Cowtroll

Atomicity

Consistency TMMWS@ Is v a consistent state &
: all imvariants are lo@mq met!

Isolation

Durability /

ACID

Strong Consistency
(in the sense of one-copy-consistency)

Atomicity

. l _
This is about Convergencel Consistency
Isolation
Durability ?

BASE

Isolation
(in the sense of one-copy-serializability)

Eventual Consistency
(stale data & approximate answers)

Pessimistic Synchronization
(global locks, synchronous update propagation)

Availability
(top priority)

Global Commits
(2PC, majority consensus, ...)

Optimistic Synchronization
(no locks, asynchronous update propagation)

Independent Local Commits
(conflict resolution, reconciliation, ...)

\

~ Fraunhofer

IESE

Strong Consistency vs. Isolation

Wake i+ appear
as one systeml

“Strong Consistency tries to mask the distributed nature of the system”

Wake i+ appear T am the
only user of the system!

“Isolation tries to mask the effects of concurrent execution”)

~ Fraunhofer
IESE

N\

“A system providing eventual
consistency guarantees that replicas
would eventually converge to a
mutually consistent state, i.e., to

identical contents, if update activity

Coined the term Eventual Consistency in the CeaSEd) "
90ties

Douglas Terry

Distributed Systems Researcher

Former Prof. University of California, Berkeley,
worked for Microsoft, Samsung, AWS

Int. Conference on Parallel and Distributed Information Systems, 1994

Pragwmatic Defivition

A system provides eventual consistency if:

(1)each update operation is eventually received by each
replica

Douglas Terry

Distributed Systems Researcher (2.)won-commutative (/(Pdﬂl‘l’@ operations are P@l”f‘bl’"W\@d
m the same order at each replica

Coined the term Eventual Consistency in the
90ties

(2)the outcome of a sedquence of update operations is

Former Prof. University of California, Berkeley, the same at each V@P[lcﬁ (d@‘l’@I"VV\IVIlSW\)
worked for Microsoft, Samsung, AWS

Replicated Data Management for WMobile Computing, 2009

Eventual Consistency

Remember:
~—

The only guarantee you get:
convergence to identical state

Application needs to handle:

Outdated Data
Conflicts
Potential Concurrency Anomalies

Events / Operations coming out of order

Huage source of uman error!

Yes, BUt No.
It's st A Bit
ouUt of SYNC.

7

Wew, I'u ge!
You're riGHt!

Eventual Consistency

Remember:
——

SIMPLY EXPLAINED

You do not get any isolation guarantees like ‘Repeatable Read’

DOES IT
WORK?

)

Application needs +o handle concurreney control:

——

Hard to test

Issues emerge randomly in production
... are hard to reproduce

... are hard to debug

7
j!

CONCURRENCY

geek & poke

Huage source of humam error!

\

~ Fraunhofer
|IESE

Consistency in Non-Transactional Distributed Storage Systems

’
'
'
'
'
'

& A.'-atomicity

‘l ’
Sequential

-
-

Writes-follow-reads

(WFR) (RYW)

Read-your-writes

(MW)

Monotonic Writes

" Per-object
‘ models N

\ -~ ~

Monotonic Reads
(MR)

Weak

~
.
\

,,"étnknwbased ,
models kY

Bounded Real-time 2 o
lork-join causal Y Preﬁx‘ e syml:;:loell’md “ k-atomicity
i causal | sequential - moced Y,/ Bounded }
! ' ‘} v/ Weakordering %/ staleness
E Causal ! Per-key Per-record } ; v &
i o ' sequential s als 1]
" Fork models | e ‘"";""‘c T Release ij Dl e
' .] I H ~regular
:' R ' Coherence :' : * H &t
: H- Lazy release i
} Per-object i g 4 i
’ A cope [
’ causal \ * i
\ F
Entry /% PBS
k / \ L, T
* Location . ' t=visibility
’ PBS
k-staleness,”
k-safe .

Eventual
linearizability
y
Strong
eventual
\ Eventual
'\ serializability
\ A
": i Composite and tunable |
: ' models :
H | o Hybrid E
H i ® Tunable :
: E e Rationing :
H E e RedBlue E
: E * Conit E
| o Vectorfield ;
E e PBS <k t>-staleness !
Eventual
Quicscent

Source: ACM Computing Surveys, Vol. 49, No. 1, Article 19, 2016

~ Fraunhofer
|IESE

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, ...

im terms of Reads and Writes

“... 1t is time for ud to move past the
examination of eventual consistency
in terms ond storage
systems. The real action comes when
examining application-based
operation semantics.”

Conference on Innovative Data Systems Research, 2009

DDD Layered Architecture

: : ™
5 Application Code g
- = . 5 o
§ 9 o Application Service . § =
23 : \ Transaction Method \ E ° 8
o g o 3
<
\ \ .
Domain:Model | ¢
1S . .
(] 3 =
g -' . o
g { : Aggregate : g
- DIP . Aggregate Repository . ggreg. : DIP 8.
E Query Method (findBy...) Domain Logic Method n
<) i 0
: c
Goal £
\ :
o : : :
5 v Eventual Consistency y = £
=)
g 0 DB DB DB DB d>) E ‘g
E> o—o o ° ® ° o——o ~ <®
a g BOT SELECT Statement UPDATE Statement EOT % T
; " 28
7

~ Fraunhofer

IESE

Business
Semantics

Recap Concurrency Control in Relational DBs

B A schedule of concurrent transactions is conflict-serializable iff the conflict graph is acyclic and
compatible with the execution order of the conflicting operations

Transactions T1, T2:

R(a) W(a) R(a) W(a) R(b) W(b) R(b) W(b)
I I I I .
I I | | Time
} }
Covflict graph is eyclic
Conflict graph: T1 T2 Q - No conflict serializability
t 7 | O - Schedule would be rejected

~ Fraunhofer
|IESE

Business Semantics - Banking

T1 T2
Withdraw(a) /Withd raw(a) \ ﬁ)eposit(b) \ /D;)_c;it(b) \
R(a) W(a) R(a) W(a) R(b) W(b) R(b) W(b)
~ ~ —
! }

\

~ Fraunhofer
|IESE

Multilevel Transactions
(Weikum et al. 1992)

Goal: Tucrease nvumber of operations that can rum concurrently!

® Exploit semantics of operations in level-specific conflict relations that reflect the
commutativity / compatibility of operations

B Transactions are decomposed into operations and the operations again into sub-operations on
multiple levels

Transactions, Business operations, Low-level read and write operations

B At each level a conflict relationship is defined
read-write conflicts and write-write conflicts on the same data item conflict at the lowest level

Non-commutative operations are conflicting on the level of business operations

B If at each level the conflict serialization graph is acyclic then the multilevel schedule is in total

multilevel serializable : - .
~— Iw practice comparable to serializability!

\

~ Fraunhofer
|IESE

- . Conflict graph at %
Multilevel Transactions Example 0 ° level of transactions:

(Weikum et al. 1992) °_>° Conflict graph at level Withdraw(a) — Withdraw(a)é
= . of domain operations: Deposit(b) —— Deposit(b)

Conflict araph is acvclic at each levell
Transactions o T1 T2 Vl'Fl @ :PM 1S \'i l M V

T

pomain (€3 Withdraw(a)\ /Withdraw(a) \ [Deposit(b) /“Deposit()

Operations
Lowll‘en‘,ﬁ:e“eado R@ W) R@) W) R(b) Wi(b) R(b) W(b)
Operations
~ ~ >
| ‘ i

~ Fraunhofer
|IESE

DDD Layered Architecture

: : ™
5 Application Code g
- = . 5 o
§ 9 o Application Service . § =
23 : \ Transaction Method \ E ° 8
o g o 3
<
\ \ .
Domain:Model | ¢
1S . .
(] 3 =
g -' . o
g { : Aggregate : g
- DIP . Aggregate Repository . ggreg. : DIP 8.
E Query Method (findBy...) Domain Logic Method n
<) i 0
: c
Goal £
\ :
o : : :
5 v Eventual Consistency y = £
=)
g 0 DB DB DB DB d>) E ‘g
E> o—o o ° ® ° o——o ~ <®
a g BOT SELECT Statement UPDATE Statement EOT % T
; " 28
7

~ Fraunhofer

IESE

Business
Semantics

Domain
Operation Design

Assoclative (ab)c = a(be)

C Commutative ab = ba

| Idempotent a0 = a
Pat Helland Operations
Database & Distributed Systems Guru D D | St Il b Uted executed out
of order...
Architect of multiple transaction &
database systems (e.g. DynamoDB) 2 O

Worked at Microsoft, Amazon, SalesForce, ...

Conference on Innovative Data Systems Research, 2009

Commutative Operations

o.domainOperation (..)
o.domainOperation2.(..)
o.domainOperation2.(..)
o.domainOperatont(..)

Best Practice

‘0’ 1s some

Agareaate [Bntity [Domain Service

Popular Examples in Scientific Publications

Counters - Integer Addition

_

Sets — Insert

Banking — Withdraw
Banking — Deposit

\

~ Fraunhofer
|IESE

Annette Bieniusa

CRDT Guru
Co-Creator of AntidoteDB

Worked at INRIA with Marc
Shapiro, TU Kaiserslautern

I INRIA

ROCQUENCOURT

Conflict-free Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal
Marek Zawirski, INRIA & UPMC, Paris, France

Theme COM — Systémes communicants
Projet Regal

Rapport de recherche n° 7687 — Juillet 2011 — [18| pages

Abstract: Replicating data under Eventual Consistency (EC) allows any replica to accept
updates without remote synchronisation. This ensures performance and scalability in large-
scale distributed systems (e.g., clouds). However, published EC approaches are ad-hoc and
error-prone. Under a formal Strong Eventual Consistency (SEC) model, we study sufficient
conditions for convergence. A data type that satisfies these conditions is called a Conflict-
free Replicated Data Type (CRDT). Replicas of any CRDT are guaranteed to converge in
a self-stabilising manner, despite any number of failures. This paper formalises two popular
approaches (state- and operation-based) and their relevant sufficient conditions. We study a
number of useful CRDTs, such as sets with clean semantics, supporting both add and remove
operations, and consider in depth the more complex Graph data type. CRDT types can be
composed to develop large-scale distributed applications, and have interesting theoretical
properties.

Conflict-Free Replicated Data Types (CRDTSs)

CRDTs ship with

commutative merage operations

Covsider LUB as uviow of different object

(states produced at different replicas

Intuitive Example: Amazon’s Shopping Card*

designed +o be a
least upper bound (LUB)

of the conflicting versious.

CRDTs are grounded in algebraic
theories of monotonic semilattices

/Shopping Card

— Soap
— Lotion

J

(Shopping Card
— Lotion
— Brush

J

\ Merge /
Deleted items

/Shopping Card

o

— Soap
— Lotion

— Brush

/

L might reappear

* Werner Vogels, Communications of the ACM, Volume 52, Issue 1, 2009

\

~ Fraunhofer

IESE

Best Practice

Beware of Domain Invariants

Wodel Dovmain Tuvariants explicitly! Examples:

_

Banking — Withdraw

withdraw(amount) ¢

Commutativity 7 ‘- assert(balavce > dispolLimit)

\/

3

\

~ Fraunhofer
|IESE

“Distributed” Operations

Concurrent operations cav be executed in a
differewt order on different replicas.

Domain Operations need +he ability to
produce intended updates if executed ow
different states ow differewt replicas!

Best Practice

Example: Concurrent operations

' Operation }\ { OPeration} >

Replica 1

Replica 2

Fraunhofer
|IESE

Collaborative Text Editing

(insert(6, r’) W

“Hlo Wold”

“"Hlo World"”

A

insert(1, ‘e’)

)

A

insert(2, ‘I’)

)

(&

insert(6, r’)

» Replica 1

)

» Replica 2

“"Helo Wold” “Hello Wold” “Hello rWold” O

o

\

~ Fraunhofer
|IESE

Domain Data
Design

Pat Helland

Database & Distributed Systems Guru

Architect of multiple transaction &
database systems (e.g. DynamoDB)

Worked at Microsoft, Amazon, SalesForce, ...

“Immutability Changes Everything”

ACM Queue, Volume 13, Issue 9, 2016

Classification

15t Level Classification of Replicated Aggregates

Concurrent In-Place Updates ?

Observed

Aggregates”
Yes

Derived Multiple Updaters ?

Aggregates”

Examples

Observed Aggregates:

 Time series data (machine
sensor data, market data, ...)

e Domain events

Derived Aggregates:

* Machine generated data
(recommendations, ...)

« Timeline or newsfeed data

Dedicated Aggregates:

» User generated data (reviews,
social media posts, ...)

Dedicated master data (user
profiles, account settings)

Yes

Dedicated
Aggregates

* “Append-Only Computing” — Helland 2015

38

© Fraunhofer IESE

Nontrivial

Aggregates

\

~ Fraunhofer
|IESE

Classification

2nd Level Classification of Nontrivial Aggregates

Update Frequency in Update Simultaneity in Concurrency Anomaly
Peak Times Peak Times Probability

Collaboration Result

Aggregates

Activity Aggregates

Nontrivial
Aggregates

Reference Aggregates

Reference Aggregates Examples:
* Master data (CRM data, resources, products, ...)

» Values (Valid currencies, product types, gender, ...)

» Meta data (Tags, descrtiptive data of raw data, ..)

\

~ Fraunhofer
|IESE

Classification

2nd Level Classification of Nontrivial Aggregates

Update Frequency in Update Simultaneity in Concurrency Anomaly
Peak Times Peak Times Probability

Collaboration Result
Aggregates
Activity Aggregates
Reference Aggregates low improbable low

Activity Aggregates Examples:

Nontrivial
Aggregates

State data of workflows, business processes, ...

Coordination data of joint activities (agricultural

field operation, meeting, ...)

Task management data, Kanban board data, ...

\

~ Fraunhofer
|IESE

Classification

2nd Level Classification of Nontrivial Aggregates

Update Frequency in Update Simultaneity in Concurrency Anomaly
Peak Times Peak Times Probability

Collaboration Result
Aggregates

Activity Aggregates high probable high

Nontrivial
Aggregates

Reference Aggregates low improbable low

Collaboration Result Aggregates Examples:

» Result data of collaborative knowledge work (CAD
model, crop rotation plan, whiteboard diagram, ...)

Text data as result of collaborative authorship
(manuals, scientific papers, meeting protocols, ...)

~ Fraunhofer
|IESE

Best Practice

Concurrency Anomalies Impact Assessment

Concurrency Anomaly Consequences of Fixing Costs of
Probability Data Corruption Data Corruption
Collaboration Result _ . _
very high critical very high
- Aggregates
c 2
-
-E @ Activity Aggregates high major high
° 5
< <
Reference Aggregates low critical very high
Dedicated Aggregates low minor moderate

(/)] " . ye "
_ E Derived Aggregates Technical Immutability Border depends moderate
S o
2
= g Observed Aggregates critical very high
g
A Classification of Replicated Data for the Design of Eventually Consistent Domain Models, ~ Fraunhofer

S. Braun, S. Dessloch, ICSA 2020 IESE

Estimation - Frequency of Classes in your Architecture Design

Collaboration Result
Aggregates

Activity Aggregates

Reference Aggregates

Dedicated Aggregates

Derived Aggregates

Observed Aggregates

“Technical Immutability Border”

Trad. Enterprise IS
(ERP, CRM, Workflow Management)

30 %

30%

30%

Social Media Apps
(Facebook, Twitter)

45%
Eventual Consistency
is standard

Next: Data-Intensive Systems
(Smart Farming, Industrie 4.0)

20%

20%

20%

44

© Fraunhofer IESE

\

~ Fraunhofer
|IESE

Trivial Aggregates First

B Whenever feasible, model aggregates as trivial aggregates”

()
O .
— Anti-Pattern Pattern
)
Y
© Stockltems Stockltems GoodsReceiepts
— > Calculated
s S periodically or
8 on demand
o+ =
v 1..% E 1..%
©
] In-place Updates Stockltem E Stockltem OrderConfirmations
c
productld: String é productld: String
number: int number: int
Nontrivial Activity Aggregate Derived Aggregate Observed Aggregates

\

* See also: Event Sourcing & CQRS (Command Query Responsibility Segregation) ~ Fraunhofer
IESE

Best Practice

Dedicated Aggregates are Solitary

¥ Design dedicated data as self-contained aggregate

Anti-Pattern

Operation

1

1..* 1.*

1

Field Assighment

DocumentationRecords

Nontrivial Activity Aggregate

1
1.*

DocRecord
w

Dedicated to single
user

Pattern

Cross-aggregate
reference

Operation

/\
1..* 1..*

Field Assighment

Nontrivial Activity Aggregate

DocumentationRecords

1
1.*

DocRecord

Dedicated Aggregate

\

~ Fraunhofer
|IESE

Best Practice

Separation of Aggregate Classes

B Whenever feasible, keep data of different classes in separate aggregates

Anti-Pattern

Operation

1 1
1.% 1.*

Field Assignment

Nontrivial Activity Aggregate

Reference data that
is rarely updated

Pattern

Cross-aggregate reference

Field

Operation
1

" 1--*

Assighment

Reference

Aggregate

Nontrivial Activity Aggregate

\

~ Fraunhofer

IESE

Best Practice

Derived Aggregates are idempotent

¥ The calculation of the state of a derived aggregate should be idempotent & deterministic

\

~ Fraunhofer
|IESE

Best Practice

Do not Forget the Master

B Consider using Primary Copy Replication, if transactional guarantees are required

Anti-Pattern Pattern

Primary Cop
Update Everywhere v v

| A
~ Fraunhofer
|IESE

Extensive Guidance in the ECD3 Domain Objects Design Guide

ECD3 Domain Objects Design Guide for
Distributed Data-Intensive Systems

Reference data that
is rarely updated

Susanne Braun

Document Revision 1.1

Anti-Pattern

Job OperationType
id: Identifier 0% 0.1 id: Identifier
status: JobStatusEnum > name: String
0..* 1
0..* 0..*
Field Assignment DocRecord
id: Identifier id: Identifier id: Identifier
v
/\ 0.*

MachineAssignment

StaffAssignment

Dedicated to single
user

A

0..% to..*
V1 A, 1
Machine StaffMember
id: IM id: Identifier

>

A

Nontrivial Activity Aggregate

\

~ Fraunhofer
|IESE

ECD3 Compatibility Relations

ACM SIGOPS
IN EUROPE

EURO/SYS

B To be published at the 8th Workshop on Principles
and Practice of Consistency for Distributed Data

® Of EuroSys 2021

Advanced Domain-Driven Design for Consistency in Distributed
Data-Intensive Systems

Susanne Braun Annette Bieniusa Frank Elberzhager
Architecture Centric Engineering TU Kaiserslautern Architecture Centric Engineering
Fraunhofer IESE Kaiserslautern, Germany Fraunhofer IESE

Kaiserslautern, Germany
susanne.braun@iese.fraunhofer.de

ABSTRACT

More and more data-intensive systems have emerged lately. Big
Data, Artificial Intelligence, or cloud-native applications all require
high scalability and availability. Data is no longer persisted in one
central relational database with serialized and transactional access,
but rather distributed and replicated among different nodes running
only under eventual consistency. This poses a number of design
challenges for software architects, as they cannot rely on a single
system to mask the concurrency anomalies of concurrent access
to distributed and replicated data. Based on three case studies, we
developed a theory regarding how practitioners handle synchroniza-
tion and consistency design challenges in distributed data-intensive
applications. We also identified the "white spots™ of missing design
guidance needed by practitioners to handle the aforementioned
challenges appropriately. We are currently evaluating our theory
in the context of an action research study. In this study, we are also
evaluating the novel design guidelines we are proposing in this
regard, which, according to our theory, meet the needs of practition-
ers. Our design guidelines integrate with Domain-Driven Design,
which is widely used in practice. Following the idea of multilevel
serializability, we investigate the compatibility of business opera-
tions beyond commutativity. We provide concrete practical design
guidance to achieve compatibility of non-commutative business
operations. We also describe the basic infrastructure guarantees
our design guidelines require from replication frameworks.

CCS CONCEPTS

« Software and its engineering — Software design engi -

bieniusa@cs.uni-klLde

Kaiserslautern, Germany
frank.elberzhager@iese.fraunhofer.de

Data (PaPoC’21), April 26, 2021, Online, United Kingdom. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3447865.3457969

1 INTRODUCTION

Distributed data-intensive systems pose new challenges for soft-
ware architects and developers. To meet quality goals such as high
availability and scalability, data is today no longer persisted in one
central database, but is rather distributed and replicated across dif-
ferent nodes [26], often only being eventually consistent. Instead of
relying on strong guarantees as given by ACID-compliant systems,
developers basically have to design and build complex data synchro-
nization schemes and also take care of concurrency control within
the distributed system. This drastically increases the complexity
of the systems software architects need to design. The implica-
tions are that software architects (and developers) need to have an
in-depth understanding of the underlying concepts of traditional
database t ti t, data replication, and distributed
systems, and also need to be able to combine these. Unfortunately,
in practice even senior staff often lacks a thorough understanding
of these concepts. This has been confirmed by our observations
from three medium to large case studies where replicated data
was an enabler for achieving quality goals such as high availability
and high scalability [8, 10, 11, 40]. We have described our observa-
tions in detail in a theory. This theory has already been accepted by
an action research [49] study we are currently conducting. In this
study, we are developing and evaluating novel design guidelines to
help practitioners safely architect data-i ive sy that have

ing; Software design tradeoffs; - Information systems — Dis-
tributed database transactions.

KEYWORDS
domain-driven design, eventual consistency, data-intensive systems

ACM Reference Format:

Susanne Braun, Annette Bieniusa, and Frank Elberzhager. 2021. Advanced
Domain-Driven Design for Consistency in Distributed Data-Intensive Sys-
tems. In 8th p on Principles and Practice of Consi: "y for Distributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PaPoC’21, April 26, 2621, Online, United Kingdom

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8338-7/21/04. .. $15.00

hups;//dui.org/ 10.1145/3447865.3457969

heterog y req Our guidelines are an ad-
vancement of Domain-Driven Design (DDD) [19]. We therefore
refer to them as ECD3 guidelines (ECD3 stands for “Eventually
Consistent DDD"). To facilitate the design of domain models, we
provide guidance for the design of domain objects (ECD3 Domain
Objects Design Guide) and the design of domain operations (ECD3
Domain Operations Design Guide) [9].

In this paper, we extend our previous work on domain objects
design [11] and provide an in-depth discussion of the ECD3 domain
operation design criteria. We aim at increasing the number of do-
main operations that can run concurrently and free of conflicts on
different replication nodes (short: replicas). Therefore, our guide-
lines take into account the compatibility and conflict relations of
domain operations. We provide the following contributions:

e We propose novel criteria for the assessment of the com-
patibility relations of domain operations, which are easier
to realize in practice than commutativity (as proposed in
multilevel serializability [54]) (Section 4).

Future Work

B ECD3- Eventually Consistent Domain Driven Design
Best Practices & Software Architecture Design Guidelines

Framework @~ Towards Multilevel Transactions

B Action Research Study

B Workshops with Practitioners

we' re ov
Github!

O EventuallyConsistentDDD/design-guidelines

\

~ Fraunhofer
|IESE

https://github.com/EventuallyConsistentDDD/design-guidelines

Susanne Braun

Software Developer & Architect

susanne.braun@iese.fraunhofer.de

% @susannebraun

0 EventuallyConsistentDDD/design-guidelines

Fraunhofer IESE, Kaiserslautern

#Thanx
#StayHome

mailto:susanne.braun@iese.fraunhofer.de
https://github.com/EventuallyConsistentDDD/design-guidelines

